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Abstract 

First the definition of the infinite dimensional Grassmannian over the Hilbert space Lk[O, l] = 
E @ (I is given, where the polarization is according to the even and odd functions. We then prove 
that the normal space N,(M(p)) at the point q E M(e), where M(e) is the isospectral set to the 
even point e, belongs to the Grassmannian over Li[O, 11. Since an element of the normal space 
depends not only on its base point but also on a parameter x E [0, 11, we first fix X, and for arbitrary 
q E M(e) we derive the group action on the Grassmannian. The determinant bundle and the tau 
function are constructed over the Grassmannian whereas in contrast to the usual constructions 
regularized determinants are involved. For fixed elements of the isospectral set and the variation of 
the parameter x the second group which acts on the Grassmannian is derived. It is then shown how a 
unified construction for both group acting on the Grassmannian has to be carried out by comparing 
it to the Fock bundle construction of 3 + 1 dimensional Dirac-Yang-Mills theories. 
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0. Introduction 

In this paper we first introduce the notion of the Grassmannian over an infinite dimensional 
Hilbert space. The Grassmannian turns out to be a Hilbert manifold modeled over the space 
of the Hilbert-Schmidt operators and there exists a group which acts on it. The difficulties 
in our case arise from our Hilbert space Li[O, I] in contrast to the space L*(S’, C) studied 
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in [4,10,17]. This complicates the matter essentially since in their case the operators act as 
multiplication operators whereas in our case the way the group acts on the Grassmannian 
has to be recovered in a more difficult way. Therefore, we discuss in this paper the toy 
model of asymptotic eigenvalues which considerably simplifies the analysis. We first prove 
that the normal spaces at any point q E Lk[O, l] of the isospectral set M(p) belong to the 
Grassmannian of Lk[O, 11. The group acting on the Grassmannian is found by using the 
analytical facts from [ 111. We then construct the determinant bundle and the tau function 
for the Grassmannian and determine the group acting on it for fixed x E [0, 11. In the next 
section the group acting on the normal vectors which keeps the points q E Li[O, l] fixed 
but vary the parameter x is derived. In the last section we show how the Fock bundle is 
constructed in the case of 3 + 1 dimensional Dirac-Yang-Mills theories which will be used 
to unify the group action of the two groups described above on a bundle which contains the 
determinant bundle. 

Remark A. The asymptotic model we consider here has two serious drawbacks apart from 
the advantage that the calculations are essentially simplified. The first is that we do not 
know the kernel and the image of the basic projection operators, which enter the definition 
of the Grassmannian, explicitly. The second one is due to the fact that we have an explicit 
basis for the vectors of the normal spaces to the isospectral set but that this basis is related 
to the Lk[O, II-basis by operators of the form 1 + Hilbert-Schmidt. Since we want to work 
explicit we decide to work in this known basis instead taking an unknown one of the form 
1 + trace class. But this forces us to consider a more general Grassmannian in order to 
construct the determinant bundle. That is, it is shown that the normal spaces are the elements 
of the Grassmannian over Li[O, 11 according to the splitting into even and odd functions. 
The group acting on the Grassmannian will have off diagonal elements which are Hilbert- 
Schmidt. However, in our case we consider them as elements of the Schatten class Z4 in 
order to construct the determinant bundle with the explicit known basis. The Grassmannian 
with the Hilbert-Schmidt off diagonal terms nevertheless is dense in the more general one. 
Since the determinant bundle constructed over the more general Grassmannian involves 
regularized determinants, the group action on the bundle will be more complicated. 

1. Grassmannian 

Let Lk[O, 11 be our Hilbert space which the polarization given by the subspace E of 
even function and of the subspace of the odd function U. Recall that the symmetry of the 
function is given with respect to the point i. The definition of the Grassmannian Gr(H) of 
an arbitrary Hilbert space H = Ef+ $ H_ with the indicated polarization is as follows. 

Definition 1. Gr2(H) is the set of all closed subspaces W c H such that 
(a) the orthogonal projection 

pr+ : W -+ H+ (1.1) 
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is a Fredholm operator, and 
(b) the orthogonal projection 

pr_ : W -+ H_ (1.2) 

is a compact operator belonging to the Schatten class 14 

We only consider the connected component with index 0 of the operator pr+. We state 
the properties of such Grassmannians which are all proved in the book “Loop Groups” of 
Pressley and Segal in [ 10, Ch. 71. 

Theorem 2. 
(a) Gr2( H) is a Hilbert manifold modeled on Z4( W, WT), i.e. it is modeled over the space 

of operators from W to WT belonging to 24. 
(b) The group GL,,,(H) acts transitively on Gr(H). 

The restricted general linear group GLz(H) is the following closed subgroup of the 
general linear group GL( H) of invertible operators on H: Let g E GL( H) be written in 
block form 

(1.3) 

according to the polarization of the Hilbert space. Then g E GL,,,(H) M b, c E 14. 
Note that in this case a, d are automatically the Fredholm operators. This follows from the 
fact that W E Grz(Lk[O, 11) _ W is equal to the image of the embedding w+ @ w- : 
E -+ E $ U with w+ Fredholm and w_ E 14. Then 

and w’+ is Fredholm as the sum of a Fredholm and a Hilbert-Schmidt operator and WY 
is Hilbert-Schmidt as being the sum of the two Hilbert-Schmidt operators. We prove that 
the normal space Ng(M(p)) at the isospectral set for every 9 E Li[O, I] is an element of 

Gr2(Li]O, 11). 

Lemma 3. N,(M(p)) isforeveryq E L&[O, l] an elementof Gr2, L~](L~[O, l]), where the 
index [q] denotes that the isospectral set M(p) is a real analytic submanifold of Lk[O, 11 

lying in the hyperplane of all functions with mean [q] := & q(t) dt. 

We omit the index [q] indicating the hyperplane with the understanding that we keep it 
fixed for the moment. 

Proof Let u = CnzO qn U,,, TJ E R x 12. We have to prove that pr+ and pr- are the 
Fredholm and Hilbei-Schmidt operators from N4 (M(p)) to E and U, respectively, 
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co 
pr+u = c (u, cos 2rrn.x) cos 2nnx, 

n=O 

Ifl I], (gi - 1, cos 2nnx) cos 2nnx 
n, m=O 

co 
= c qrn (A,, + (0( 1 /m>, cos 2nnx)) cos 2nnx, 

n, m=O 

where we used (1.7) from [20]. 
But by the Bessel inequality, 

(1.4) 

2 1(0(1/m), cos2nnx)[* 5 2 ]O(l/m)]* 5 c 2 -$ p co. (1.5) 
n, In>0 m>O m>O 

Hence, the operator pr+ is of the form 

pr+ = 1 + S, (1.6) 

with S Hilbert-Schmidt. Since the Fredholm operators are invertible modulo compact op- 
erators, we proved that pr+ is Fredholm. We omit the same proof for pr_, which gives us 
that pr_ is a Hilbert-Schmidt operator. 0 

We proved that in fact the Grassmarmian we consider here is Grl, that is with the Hilbert- 
Schmidt operators in the off diagonal terms of the group action w.r.t. the polarization. 
Since the Hilbert-Schmidt operators also belong to the Schatten class 14, there is a dense 
embedding of Grl in Gr2. Since in the construction of the determinant bundle we will need 
what is called an admissible basis and in our case the admissible basis, we explicitly now in 
order to do calculations leading to Gr2 we will consider this Grassmannian (see Remark A). 
In Theorem 2 we stated that the Grassmannian is a Hilbert manifold. We give now explicit 
coordinate charts. To get them we imitate the procedure for L2(S1, C) in [ 10, p. 1031. Let 
(ek}kEz, k,u be the basis vectors for the even subspace E of Li[O, l] and (e_k}ke~, k<u those 
for the odd subspace U. Then S is a subset of Z which is bounded below and if the number of 
negative basis vectors is m E N, then all positive numbers but the first m ones belong to m. 
We make a finite dimensional example which shows the coherence of the above definition of 
the infinite dimensional Grassmannian with the finite dimensional one. Let C4 = C* @ @* 
be the Hilbert space corresponding to Lk[O, 11. Then the Grassmannian Gr4 is the manifold 
whose elements are all subspaces of C4 = C2 @ C*. This means that Grq = U!=, Grq, i, 
i.e. it is the disconnected sum of the one, two, three and four dimensional subspaces. The 
number of charts which are necessary to parametrize this subspaces is equal to 

This number can be put into relation with the set S. If we denote the basis vectors of C4 by 
e-1 =: - 1, e-2 =: -2, ei =: 1, e2 =: 2, where those with the same signs span one of the 
subspaces C2. Then the set S consists of the spaces spanned by the following subspaces 
of C4: 
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SI = (-1, -2, 1,2}, corresponding to C4; 

S?, . . .3 ss = I-11, t--2l,{Il, (2), 

corresponding to the one dimensional subspaces; 

S6, . . .1 SII = (-2, -l], (-2. I]. (-22). (-1, -l], ]-l,2], {1,2), 

corresponding to the two dimensional subspaces; 

s12. . . . . SIS = I-2, -1. I]. (-2, -1,2]. ]-I. 1,2], I-2, l,2}, 

corresponding to the three dimensional subspaces. 

219 

It is clear that to any projection of W E Gr4 to C’ there is a subset S E S such that this 
projection is an isomorphism. 

Let S be the collection of all this sets S and H.y is the closed subspace spanned by S. 
Using this fact the following lemma is easy to prove [ 10, p.1031. 

Lemma 4. For any W E Grz(Li[O, 11) there is a set S E S such that the orthogonal 
projection W + Hs is an isomorphism. In other words the sets [UHs}sCS, where 

A ^ 
UH,~ = {W E Gr(Li[O. 11) I p : W -+ Hs, 

p an orthogonal projection and isomorphism}, 
(1.7) 

form an open covering of Grz(Li[O, I]). 

2. Group acting on the Grassmannian for fixed parameter x 

In the first part, we describe the general situation, i.e. the non-asymptotic case, where we 
keep x E [0, l] in the normal vectors U(x, ) fixed. Using that E E Grz(Lk[O, 11) and that 
we only consider the connected component with index(pr+) = 0, there exists a group Gz. 
which according to the splitting of the Hilbert space any element has the form 

where any element maps E into a normal space at a point q E M(p) and a,d are the 
Fredholm operators, b, c E 14 , respectively. That is, there exists a q E G2 such that 

g. E = &M(p)). (2.1) 

Clearly, g is a function of x and q. Fig. 1 illustrates the geometric setting. How this group 
acts explicitly on the Grassmannian? Clearly, the following holds. Let u E E be a vector in 
the normal space at a point q E E. With respect to the polarization Z$[O, I] = E CB U 1) 
has a zero component w.r.t. U. Let then g E G2 acting on u, i.e. 

(i i)( i)=( t’)=( ~:~~)tN,W(e)). (2.2) 
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Fig. 1. 

Inserting the explicit formula for u E N,(M(e)) written down in (1.7) and using the 
asymptotic expansion (1.6), 

Since v E E, 

v= 2 (v, cos 2Yrnx) cos 2Trnx, 
n=O 

(2.4) 

and we get for the nth basis vector of v the equation (m > 1) 

( cn amn cos 2rrnx %fzpr+(g~ - 1) 
Cnhn” cos 2nnx > ( = Ilmpr-(g: - 1) > 

( )I*pr+(O(l/m) - cos 2?rmx) = 
nmpr_(O(l/m) - cos27rnx) > 

( rl&V+(O(l/m) - cos2nmx) = 
rlmpr-O(llm) 1. 

(2.5) 

To find a solution of (2.5), i.e. to determine a and b in a direct way seems hopeless. We try 
an indirect way and instead of finding the explicit form of the group action on an element 
of E we consider the general case with v E Np(M(e)), p # e, e E E. That is v has 
also two components v+ and v_. We first consider the operators a, b, c, d of g E G2 in 
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E coker pr(l,+) 

L2~([0,lj).E + U 

E 
coker p(2,t) - 

more detail. Let w E Nq(M(e)) such that w is reached from u by R. Furthermore, the 
two components of w according to the polarization are w+ and w_. Let •2~ = cos 2rrtnx 
and CLQ,,, = sin2nx denote the basis vectors of E and U, respectively. Fig. 2 shows the 
projection of the two elements NP(M(e)) and Nq (M(e)) of the Grassmannian into the space 
E @ U. We consider this image since we study the group element g transporting u into w as 
a map of the appropriate subspaces of Lk[O, l] into itself. Fig. 2 shows the various spaces 
and maps of the following discussion. 

Since prl. 2 are Fredholm, we have that 

dim ker p: = dim coker p:, dim ker p: = dim coker pt. (2.6) 

Then the group element g is a linear bijective map from 

R: E~U8cokerpr:8cokerprl -+ E@U8kerpr:8kerpr!. (2.7) 

Furthermore, 

a:E+E, d.lJ-+U, b.E--+U, c:U+ E. (2.8) 

Since a E F, where F denotes the class of Fredholm operators, we may write it in the form 

a=q+t with q invertible and t finite rank. (2.9) 

qisaninvertiblemapfrompr:(N,,(M(e)))inpr~(Nq(M(e))).tmapsafinitedimensional 
subspace M c E into a finite dimensional subspace t(M) =: L of pr$(N,(M(e))) with 
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dim L _( M. The coker K of t has dimension dim K = dim M - dim L. The operator c 
mapsprl(Np(M(e)))inpr:(Np(M(e))).Sincegisinvertible,a+chastobesurjectiveon 
pr:(Nq), hence c maps a subspace J c pr!(Np) in pr?(Nq), with dim J = dim K. For 
b, c we have: d E .F maps all but a finite subspace G of pri (Np) bijective in pr! (N,) and 
b is Hilbert-Schmidt which maps pr: (Np) in pr? (N,) where there is a finite dimensional 
subspace H of pr:(Np), dim H = dim G - dim cokerg, which is mapped in G since, 
again, g has to be invertible. 

The concrete realization of g is now given in the asymptotic case. 

Theorem 5. Let 

u(x, P(X)) 6 Np(M(e)), 
d2 

h := h(x, p(x)) = 26x2 logdet 0(x, tq,c) E M(e) 

with 

I(ftf)L Ihf)l P llhll2. 1 < llhll2, Vf E Lk[O, I]. 

Then the elements of the group G2 which acts on the Grassmannian Gr2 (Li [0, 11) are given 

by g(x, tq) = (1,&x, tq(x))), where B(x, tq(x)) is the operator de$ned by the equation 

&x7 tq(x)W(x, p(x)) = 2 c s.o( 3 T $, 
n>l 

k 

co 
; (dY~m(h>h , . . . ,h; p)P,,_k(h, h, . . . , h; p) =: (eCah - l)U(x, p(x)), 

m=O 

and the sum converges if the above bounds on h are imposed. The functions Pk are defined 

by 

&gn’xJW’f~.h~ . . ..fk)(f>=.a,kg,=(~)kPk(f,,f2, . . ..fk. f,o(f), 

and their speci$c form is given in the prooJ: 

Remark. The identity element of the group G2 is e = (1, 0), the inverse element g-l to 

the element g(x,tq) = (l,B(x,tq(x))) is given by g-‘(x,tq) = (1, - B(x,tq(x))) and 
the composition of two elements gt and g2 is defined by 

g1 (x3 SW(X)) * g2b, tq(x)) = (1, mx, sw(x))B(x, tq(x))). 

Remark. After the proof of Theorem 5 we give as a corollary the explicit form of the group 
elements when we consider the polarization of the Hilbert space. 

ProojI The strategy will be a perturbation of the normal vector at q E M(e) in a direction 
h E M(e). We start with some facts which are taken from [ 111. On the isospectral set M(e) 
there exists an addition of two points, i.e. 

w @ P =: exp,(VK(Wj+K(p)) (2.10) 
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for W, p E M(e). The even point e E M(e) is the identity element of the group with the 
group operation $ and the inverse element of p is given by reflection at the space subspace 
of even functions E. Furthermore, a curve on the isospectral set is denoted by @‘(9, Vc), 
where 0’ = q, a -C t K b and 

$@(9, Vt_) = V#(q, Vc)), exp,(Vc) = @‘(q, V~)L=I. (2.11) 

A point on the isospectral set for fixed t is given by 

@‘(q,Vt) =e-Z-$logdetO(x,19_~), (2.12) 

where 

I 

8(x, t9,<) = 1 + (e@’ - 1) gi(s,q)gj(s,q)ds 
s .x i. je% 

(2.13) 

Since the derivative of a determinant is given by the formula 

$ det A(s) = det A(s)tr $A(s) A-‘(S), 
( > 

we get 

d2 
dx? log det 0 (x, t9, <) = tr ( [-$WxJq,o] (Wx,t9,~))-t 

+ $@(*,tq,0 (o(x,t9,<))-2 
I 

. (2.14) 

Is the determinant well defined? The asymptotic expansion of gj is 

gj(X,kj,q) = fisinnjx +0(1/j). 

Hence, 

(2.15) 

s gi(S,9)gj(sT9)ds 

2 
’ 

7r(i2 
_ j2) (l - &j)[J sin ;irix cos njx - i sin 3rj.x cos nix] 

-t[l - x + & Sin2TiXlbij + 0( s> + O(f, + O(f) 

=: 6ij + F(X)ij. (2.16) 
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Therefore, 

I 

s gi(S,q)gj(s,q)ds =aij + F(x)ij +O(l/ij), 
X 

and 

&t @(“) = cc I 1 l-l et det[dij + (1 - e-‘Si)F(x)ij]tii,jsn 
i 

detGF(x)ij)tsi,jin =I det 8 det G F. 

The infinite determinants in (2.18) exist since 

(tt)icN E e2 x RT (2.19) 

and 

= (’ -e~‘x’ij) = AB. 
I Iii, jin 

/ 

B 

(2.17) 

(2.18) 

(2.20) 

But A E Z2 and since 

liiu l;; 
s 

=o, 

we get with the Bessel inequality and the Parseval identity that B is also Hilbert-Schmidt. 
Hence, we have a product of two Hilbert-Schmidt operators which is a trace class opera- 
tor. That is the determinants in (2.20) are the well defined Fredholm determinants in the 
limit IZ + 00. We further need the norm of the points on the curves on the isospectral 
set, i.e. [ 111 

li@,‘(s,Vt)ll = llfqll = Ml + 8 ~&(tq)[cosh(~n(q) + GA - cosW,(q))l, 
rlll 

(2.21) 

where 

6, (q) = 2nY( 1 + O(log n/n)) 

The group G2 for a&&x acts on a normal vector U(x, p(x)) in the normal space N,,(M(e)) 
and transports it in the normal vector U (x, tq), i.e. 

U(x,tq) = g(x,tq)Cl(x,p(x)), g E (32. (2.22) 
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Remark. As a shorthand we use the notation U(x, ts) = U(X, @(q)). 

Using Eq. (2.12), we write 

U(.y, rq) = U(x, p(x) - h(x, p(x))), 
2 

h(x, p(x)) = 2-$ logdet (7(x, tq, 6). 

(2.23) 

We formally expand U(x, p(x) - h(x, p(x))), 

h(K. p(x). t)=/?(r) 

anutx, h(x, P(X), t)> (2.24) 
hC.1. p(x). r)=p(.r). 

and where 

au(x, htx, p(x),f)) 

ah(x, P(X), r> h(*. p(-x), f)=p(x) 
,h(x,p(xLt) 

aUtx,h(x, P(X), f)) = 
ah(x, P(X), t) 

h(x, p(x),x). 
h(l, p(x)* r)=p(x) 

(2.25) 

The derivative w.r.t. h is defined in the following way: First let f be a functional between a 
Hilbert space E and the complex numbers. If we denote the derivative of f at the point x by 
d,Y f, then by the Riesz representation theorem there exists a unique element af’/ax in the 
Hilbert space E, such that d,f(u) = (aflax, u) for all u E E. But in our case (au/ah, h) 
is the tangent map from the tangent space at 4 E Li[O, 11, which clearly is isomorphic to 
Li[O, 11, into Li[O, l] evaluated at h. The &h-derivative term, (akU/ahk, hk) is the k- 
linearmapfrom Lk[O, l]xZ$[O, 11x.. .xLi[O, l]intoL&[O, l]evaluatedath@h@. . .@h 
which simply gives (akU/6’hk)hk. We write the expansion of U(x, (p(x) - h(x, p(x), t))), 
i.e. (2.24) in the form 

u/(x, p(x) - h(x, p(x), t)) := 
( 
exp [i]u(x, (p(x)L exp[hl) . 

1 
(2.26) 

We need to calculate the derivative of I/(x, h(x, p(x), t)) w.r.t. h(x, p(x), t). 

Lemma 6. a 
(4 ah(x. P(X), f) 

gnb, h(x, PCX>, t))(f) =: ahgn 

= &go($) = o(i) (2.27) 
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= (z/;;>kPk(fl? .f2 , . . . , fk; f)O(l/n) = 0(1/n), (2.28) 

fork > 1 and where the notation (a/ah)g,,(x, h)(g) is dejined by 

$,&h)(f) := $gAh +tf)lICO. 

and ( , ) denotes the L2-inner product. 

In (2.28) the first three functions pk(f], f2, . . . , fk; h) have the following expressions: 

Pl(f; h) = +$ 

p2cf, f2. hj = (fit f2) (h, fl)(h, A) ~- 7 3 
Ilh II llhl13 ’ 

P3(fl, f2, f3; h) = 
-(fitfd(f3,h) - (f3vfd(fl,h) - (fi,fd(fz>h) 

llhl13 
+3 (h, fi) (ht fd(h, f3) 

VII5 . 

The proof of this lemma is given in Appendix A. 
We continue with the proof of Theorem 5. Lemma 6 and formulae (2.24), (2.27) and 

(2.28) imply for the derivative of the normal vector U(x, h(x, p(x), t)) 

(2.29) 

and for the higher derivatives, 

x Pkpm(h, h, . . . ,h; pW(-$). (2.30) 

We next give a graphical description of the terms P,,,(h, h, . . . , h; f ). The first terms are 

p, = (f,h) p2= (f,f) (fth12 -- 
llhll ’ llhll llhl13 ’ 

p3=_3(f’f)(f’h) +,(f,hJ3 
llhl13 llhl15 ’ 

p4= ,(fd2 I 18(f.fHf~h)2 _ ,Jf‘,hj4 
Ilh II3 llh II5 llhll’ ’ 

p5=45(f’f)2(f”h) _ ,,,(fvf)(f,h)” + los(f,h)5 
llhl15 llhll’ llhl19 ’ 
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Fig. 3. Graphical representation of PI to P(j 

p6&m _ 
llhl15 

675 (“i-9 f)2(fJd2 + 1575 u-3 W”(.f> f) _ 945 h f? 
llhll’ llhl19 Ilhll” 

If we write a bubble for (f, f) and the line for (h, f), we get the following graphical 
representations for Pt to P6 with the multiplicities modulo the Ilh l(-k-factors (Fig. 3). 

If we use 0 for (h, f) and 52 for (f, f), respectively, we can write Pzn+t in the form 

P2n+l = c b;2”+1)(I)‘Q2j, 

i+2j=2n+l, qEP, 

where PO is the finite subset of the natural numbers consisting of all solutions of the equation 
i + 2j = 211 + 1 w.r.t. i E N and j E N for fixed 12. 

Example. 

p5 = bc5’ + bc5) + b(5) 
2 3 ’ 

and comparing this with the above table we get 

b(5) = 45 
1 

bc5’ _ lo5 
llhli5’ 2 

b’s’ _ 

llhl19’ 3 
I50 
llhll’ ’ 

In the same way we have the decomposition 

P2n = c 
b(2”)@‘Q2j 

9 
i+2j=2n+l,qCP, 

where PC is the finite subset of the natural numbers consisting of all solutions of the equation 
i + 2j = 2n w.r.t. i E N and j E N for fixed n. We now give necessary conditions 
(f, f), (h, f) and llhll have to satisfy such that 

&Cl (fi)mP,n(h,h, . . ..h. f)Pk-m(h,h, . . ..h. f) 

converges. 
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Let condition (*) be: 

(*> I(f7f)L I( 5 llhll, 1 -=c Ilhll. 

This implies that 

IPn(kh, . . . ,k f>l I 

and if we write S: for maximal absolute value of the coefficients in the graphs belonging to 
Pk, wehave IP,(h,h, . . . , h; f)l I cs~/llhl12”-‘, where c is a constant. Hence, 

where we applied the Holders inequality in the last line. We further get, 

A sufficient condition for the last integral is given by the inequality 

or equivalently, 

llhll > (k&(!$)? 
Since (n) ‘in + 1, for n --+ co, the sufficient condition 

is fulfilled, if C~=o(ls~l/m!)2 - k”,a E Ft. But the leading order coefficient sl,Vk, is 
smaller than kk, which implies that 
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This shows that Ck=,( IS* I/ m m. ‘)2 - k”, and therefore conditon (*) is sufficient for 

being finite. In the same way one proves that for llhll < 1 and (h, f)k+2, (f’, f)k+2 -C Ilh 11, 
k > 2, the sum over the graphs converges. 

We now return to the group action! 
Lemma 6 and formulae (2.24), (2.27), (2.28) and (2.30) give as a final result for the 

shifted vector U(x, (p(x) - h(x, p(x), t))) the formula 

x (fi)mpm(kk . ..h; p)Pm-k(h,h, . ,h; p). (2.31) 

Writing a group element in the form g(x, tq) = (1, B(x, tq(x))), where B(x, tq(x)) is the 
operator defined by the equation 

&x3 ts(x))U(x, P(X)) 

= (ed - l)U(x, p(x)). (2.32) 

The identity element of the group GZ is e = (1, 0), the inverse element g-t to the element 
g(x,tq) = (l,B(x,tq(x)))isgivenbyg-‘(x,tq) = (l,-B(x,tq(x)))andthecomposition 
of two elements gt and g2 is defined by 

g1(x,sw(x>) *g2(x,tq(x)) = (1,B(x,sw(x))B(x,tq(x))). 

This proves Theorem 5. 

(2.33) 

0 

We now discuss the form of the group action w.r.t. the polarization of the Hilbert space 
for fixed x. That is we have to determine the matrix elements a, b, c and d in the equation 

( 

U+(x* ts(x)) = 
U-6, Q(X)) > ( 

a(x, tq(x)) c(x, Q(X)) U+(x, P(X)) 
b(x, ts(x)) d(x, tq(x)) I( > c’-(x7 P(X)) . 

(2.34) 

(2.34) implies that 

aU+(x, P(X)) + cU-(x, P(X)) E kerpr-, 
cU+(x, P(X)) + dU-(x, P(X)) E kerpr+. 

(2.35) 

At this point the use of the asymptotic analysis breaks down, since the determination of the 
kernel of the orthogonal projections from the normal spaces to the even and odd subspaces 
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of L&[O, l] need a non-asymptotic analysis. A special solution which satisfies the condition 
(2.35) is given by 

g(x,tq) = 1 + pr+@x, Q(x)> pr+&, Q(x)) 
pr-B(x, rq(x)) > 1 + pr-B(x,tq(n)) ’ 

Note that B(x, tq(x)) is Hilbert-Schmidt, hence g(x, tq) is of the form 

(2.36) 

s(x,tq)= ( 1’1 z ), (2.37) 

that is g(x, tq) E G2. Therefore, Theorem 5 can be written down without difficulty when 
we regard the group action w.r.t the polarization of the Hilbert space. 

3. Determinant bundle and the tau function for fixed parameter x 

For a more exhaustive discussion of the determinant bundle see [4, lo]. First we introduce 
the groups G2 and F2 defined by 

G2 := (A E GL(L;[O, 11) 1 A - 1 E 12) (3.1) 

and 

F2 := lk,q) lg E G2, q E GW+q-’ - 1 E 221, (3.2) 

where.g = (E t) E G2. F2 is a subgroup of G2 x GL(E). The group G2 acts on F2 from 
the left in the form 

(g*q)s := (g,qs), 3 E G2, (g,q) E F2. (3.3) 

Let V = (V, = gz - 1,n > l,)nE~, Vo = 1 be an orthonormal basis of N,(M(e)) E 
Grz(Li[O, 11). In order to define the determinant bundle, we have to select all those bases 
of an element N in the Grassmannian which are related to the orthonormal basis of Lk[O, l] 
by a matrix which has a determinant. Such bases are called the admissible ones. This is 
the difference in the construction of the determinant bundle in the infinite dimensional case 
compared to the finite dimensional one (see Remark A). 

Definition 7. Let W = { WnlnE~ be an orthonormal basis of N E Grz(Li[O, 11). W = 
(Wn}nE~ is furthermore an admissible basis of N if (a) W can be reached from the or- 
thonormal basis of Li[O, l] by a linear isomotphism and (b) if the matrix w+ defined 

by 

Pr+wk = c (w+)jkej (3.4) 
jr0 

is in 1 + 22, where the set (ej} is an orthonormal basis of Z_.i[O, I]. 

The basis V = {V, = gi(x,q(x)) - 1,n > l,},,rm is an admissible basis of N,(M(e)) 
and the matrix w+ is 1 + S in this case (see Lemma 3). The set of all admissible bases 
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for all N E Gq(Li[O, 11) is denoted St2(Gr2(Li[O, 11)) and is itself a manifold, called 
the Stiefel manifold. In order to continue we first give the definition of the regularized 
determinants and state some of its properties (for the proofs see [ 14,171). If A is trace class, 
i.e. A E 21, then 

logdetA=trlogA=tr(A-$A2+iA3--..). (3.5) 

Hence, if A is Hilbert-Schmidt in order that an expansion of the form (2.12) is possible, we 
have to subtract tr A which is not defined for A E 12. Since the next terms in (2.12) consist 
of powers of A and any power A”, II > 1, of a Hilbert-Schmidt operator is trace class, the 
definition 

det2( 1 + A) = det((1 + A)epA), A E 12, (3.6) 

gives us a well defined object which shares most of the properties a usual determinant 
does. 

Theorem 8. Let A E 22. Then: 
(a) The mapping A + detz( 1 + A) is continuous in the topology of 12. 
(b) 1 + A is invertible +=+ det2( 1 + A) # 0. 
(c) If A E 21, then 

det2( 1 + A) = det(1 + A)eFtrA. 

(d) ZfA, B E 12, then 

detz(A B) = det2A det2 B e -trW-A-B+l) =: det2A det2B eyz(A> B) 

(e) IfA,B,C E 1 +22, 

wz(A, B) := det:! B e*(A3 ‘), 

then 

w2(A, BC) = wz(AB, C)wz(A, B). 

Using Theorem 8, we prove the following lemma. 

Lemma 9. The formula 

(3.7) 

(3.8) 

(3.9) 

(3.10) 

(w,h)s = (tus,hw2((1 + S),s)-‘), s E G2, (w,h) E St2(Gr&[O, 11)) x R, 

(3.11) 

defines afree action from the right of G2 on St2(Gr2(Li[O, 11)). 

Proot We first prove that (3.11) defines a right action. Lets = 1, then (w, h) 1 = (u), hw2(( 1 
+S), I)-‘) = (w, h), since o2(( 1 + S), 1)-t = 1. For the transitiviy, let s, r E G2, then 
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(w,h)(s 0 r) = (w(s 0 r>,hw2((1 + S),sr)-‘) 

= ((ws)r, Aw2((1 + S)s, r)-‘04((1 + S), r)-I) 

= (ws, ho2((1 + S), s)-‘jr, 

where we used (3.10). The action is free if (w,L)s = (w,h) M s = 1. But (w, h)s = 
(ws, hwz((l + 9, s)-‘) = (w, h) iff w2(( 1 + S), s)-’ = 1. The last equality exactly holds 
iffs = 1. 0 

Since the action of G2 is free on the Stiefel manifold we define the smooth manifold 

DET2 := (Stz(Gr2(Li[O, 11)) x R)/G2, (3.12) 

i.e. the determinant bundle. In order to define the tau function later on we need also the 
dual bundle DET$ of DET2. A real analytic section on DETZ is a real analytic function 
@ : St2(Grz(Li[O, 11)) + R such that 

@(wt) = 1Cr(w)W2(W,t), t E G2. (3.13) 

The next task is to determine the group acting on the determinant bundle. 

Theorem 10 [41. For x E [O, 11, x@ed, the group 

62 := (F2 x Map(Gr2, RX))/&‘, 

acts on DET2, where N = ((l,q,pLq)], t+ := cr(l,q,w)-‘w2((1 + S),q-‘)-‘, 
Map(Grz, W”) is the space of smooth functions from Gr2 into Rx and 

a! : F2 x Stz(Gr2(Lk[O, 11)) -+ RX 

is the solution of the equation 

a(&?, 43 wt) w2((1 + S), t) 

dg,q, w> = wz(g(l ??t- S)q-‘,qtq-1)’ 
(g,q) E F2, w E St2, t E G2. 

If g E Gl 0, the dense subgroup of G2 where a is invertible and c = 0, then the sections 

4 : U -+ & form the automorphisms group of the determinant bundle. 

Proof Since G2 acts on the Grassmannian one could think that the group action on the 
determinant bundle is simple given by lifting the action of the form g(w, h) = (gw, k). The 
obstruction appearing is that gw is no longer an admissible basis in general. We overcome 
this difficulty by constructing a central extension of G2. There is further the complication 
that we have regularized determinants, that is we have to regularize the determinants in order 
to avoid singularities. We closely follow [4] and define an action of F2 x Map(Gr2, Rx) on 
St2(GrZ(Li[O, 11)) x 08 by setting 

(g,q, K)(WY h) = (gwK’9 ka(g,q, w)&(w))), (3.14) 
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where n : (St2(Gr2(Lk[O, 11))) + Gr2 is the canonical projection, Map(Gr2, C*) is the 
space of smooth functions from Gr2 to Rx. The smooth function 

(Y : F2 x Stz(Gr2(Li[O, 11)) + Rx 

is the solution of the equation 

a@, 93 wt) 02((1 + 9, t) 

c.y(g, 4, w) = w2(g(l + S)q-‘,qtq-‘1’ 
(g,q) E F2, w E St?, t E G2. (3.15) 

The solution which takes care of the possible singularities is given by 

a(g, 4. wt) = f(g, 4, WI 
det2(1 + S) det2(~(q-‘a(F” + 1) + q-‘cF2’ )) 

deb(g(l + S)q-‘) det:!(i(F” + 1)) 

(3.16) 

where f is an arbitrary smooth function and F = (Fii Fii) 1s the linearoperator in Lk[O, 11 

which is 1(-l) restricted to N E Grz(Li[O, l])(N’), where N is spanned by the basis w 
(for a proof, see [4]). The composition of two group elements in (3.14) is given by 

(8, q, I-L)(g’,q’, CL’) = (gg’, qq’, dg’N)d(NMg,q, g’wq’-‘) 

x dg’,q’, wMgg’>qq’> W’). 

To prove transitivity of the action, we have 

(g, q, p)(g’,q’, P’) = (gg’, qq’, cL(g’N)p’(N)oQ.q> g’wq’-‘) 

x o(g’, q’, W)c&?‘> 99’3 0) 

= (gg’w(qq’)-’ , ha(gg’, 44’3 wb(g, 49 g’wq’-‘) 

x dg’,q’, wMgg’9 99’7 W’h 

(3.17) 

but 

cr(gg’, qq’, w)a(g, 49 g’wq’-%(g’, 4’7 w)o(gg’, 44’3 W’ 

detz(1 + S) detz(i(q’-‘q-‘a(F” + 1) +q’-‘q-‘cF2’) 

= detz(gg’( 1 + S)q’-‘q-‘1 deb(i(Fi + 1)) 

x ~(g’N)CL’(N)cu(g,q,g’wq’-‘)cr(g’,q’,w)a(gg’,qq’, W’ 

= ,u(g’N)I.L’Wb(g, q, g’wq’-‘Mg’q, w). 

This implies that 

(gg’, qq’. pLL(g’N)p’(NMg, q, g’wq’-‘Mg’, q’. WMgg’vqq’, w)-‘1 

= (8, q, Pcl.)(k’, 4’9 w’)(w, A)). 

This proves the transitivity. It is now easy to prove that the group action (3.14) can be lifted 
to an action on DET2. However, this action is not faithful, i.e. we have to divide by the 

kernel which is 

N = ((l,q,/+)), .LL~ := a(l,q,w)-‘m((1 + s),q-‘I-‘. (3.18) 
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This implies that formula (3.14) defines a faithful action of the central extended group 

6.2 = (F2 x Map(Grz,R*))/N (3.19) 

in DET2. If 4 : U + 6.2, U E G2 is a local section defined by 4(g) = (g,a, 1) then the 
local cocycle c (gt ,g2) is equal to one if gt and g2 are both lower triangular, i.e. 61 = b2 = 0, 
and at and a2 are invertible. Then, 

$J(g1M(g2) = 4(g1g2). (3.20) 

Therefore, the automorphisms group of DET2 is Gt,, the dense subgroup of Gz where 

a is invertible and c = 0. The same is true for G; u, i.e. the subgroup of G2 where a is 
’ invertible and b = 0. This proves Theorem 10. 0 

We now turn to the tau function. Let 4 be a real analytic section on the dual determinant 
bundle DET* i e 2’ . . 

I+5 : St2 + R, $(wt) = 17/(w)w2(w,t), (3.21) 

where t E G2, w E St2. A solution of Eq. (3.21) is given by e(w) = detzw, which we call 
the canonical real analytic section. How does the other sections look like? To answer this 
question let u : E + iVq be the linear isomorphism which maps the ith basis element of E 
into the i th basis vector of N4. If (Ui] is an admissible basis of N4 then v has the following 
matrix form: 

u= pr+ 

( > 
with pr_ Hilbert-Schmidt, (3.22) 

pr- 

that is u is a Z x N matrix with the column labeling the different Vi and the row labeling the 
coordinates in the standard basis of Lk[O, 11. Let S E S be a fixed set and us the submatrix 
obtained from u by choosing the rows labeled by S (see the discussion after Lemma 3 for 
the meaning of the set S). Then 

ds = det2 use~2(P’?-f%‘S), 

are the no longer real analytic sections of DET$, where 

(3.23) 

,L?2 =logZ, A E 1 +Zt. (3.24) 

Note that the traces in (3.24) are all taken of finite dimensional matrices. Another form to 
write the sections of the dual determinant bundle is given by using the one forms fi, defined 
by fk(ei) = 6_k,j, where (ej} is an orthonormal basis of Li[O, I], and setting 

j=O 

-cc 

det2 pr+ = c-o 1 A fj (WO, WI, . . .). (3.25) 

The tau function measures the non-equivariance of the group action of G, o on the deter- 
minant bundle, i.e. 

r&&p(N) = ,&-‘N), g E GiO, (3.26) 
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where p(N) = (w, detzpr+) denotes a section on the dual bundle and where we assumed 
that the N is transverse to U, i.e. N@U = Lk[O, 11. We now calculate the explicit expression 
of the tau function. The left hand side of (3.26) is transformed in to 

LHS (3.26) = (&,a, l)(w,h) = (g-‘wa+,ha(g,a, w)) 

= (g-‘wa-’ ,detz pr+o(g,a, w)) 

= (8-l w, detz a detz pr+cr(g, a, UI)). 

The right hand side is written in the form 

RHS (3.26) = (g-‘w, detz(g-‘w)) = (g-‘w, detz(upr+ + cpr_)) 

=(g-‘w,detzudetzpr+detz(l +a-‘cpr-pri’) 

x exp(n(u,u~‘cpr-prl’) + y2(u-‘cpr-prg’, pr+)]), 

where 

y2(u,u-‘cpr_pr+‘) = -tr(cpr_prr’ - a - C’cpr-pr;’ + l), 

y2(u-‘cpr-pr+‘, pr+) = -tr(u-‘cpr_ - a-‘cpr_pr+’ - pr+ + 1). 

Since cr(g,q, w) = exp[-tr((1 - q-‘u)(pr+ - l))] in the case of g E G&, the function 
[Y above is equal to one. Therefore, we proved the lemma. 

Lemma 11. For g E GTO, N E Gr2( Li[O, 11) and N transversal to the space of odd 
functions U, the tuu function is given by 

TN(R) = c&(1 -I- B)exp{-tr(aB -a - B + 1) + tr(Bpr+ - pr+ - B + l)]. 

(3.27) 

where B = a-‘cpr_pr<‘. 

Inserting the expressions a = 1 + pr+I3 and c = pr+B the tau function reads 

TN(g) = detz(l + (1 + pr+B)-‘pr+Bpr-pry’) 

x exp( -tr(cpr_pri’ -a - a-‘cpr_prr’ + 1)) 

x exp(tr(a-‘cpr_ - a-‘cpr_pri’ - pr+ + 1)) 

= detz( 1 + pr_pr+ - (1 + pr+B)-‘pr-prr’) 

x exp{-tr(pr+B(pr_pri’ - 1) + (1 + pr+B)-’ - l)pr_prr’} 

x exp(tr(2pr_ - (1 + pr+B)-‘pr_[l - pr,‘] - pr-pr;)]. (3.28) 
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4. Group action on the Grassmannian for arbitrary parameter x 
and fixed p E Lk[O, 11 

We determine the group e acting on the x parameter of the normal spaces of the isospectral 
set but leaving q E Li[O, l] fixed. Let x,y E [0, 11, y = x + h. The main result is 
Theorem 12. The group element g E C? we want to determine acts on two vectors of the 
normal space in the form 

U(Y, P(Y)> = HY9 P(Y))U(X, P(X)). 

Then, 

U(x + k Pb + h)) 

= U(x, p(x)> + 2 ; [ dnu;;p) Ihzx + anU;;y)) I,,=& (4.1) 
- 

We start calculating the derivatives w.r.t. x. We set h, = h in the following calculations and 
since 

sin 4%~ 
I 

Y2(X, A, 9) = 
J 

sin FIX 

A+ fi 
q@)Yz(x, hq) dt, 

0 

and ]ci(r)l _( exp(lIm&lt), we have the bound 

ly; - cm 6x1 5 fj exp(lImfilx + 114 Ilfi), 

hence, 

y;(x,L,q) = cosn7f.x + lIqll0(ll~>. 

The same kind of calculations gives us for the kth-derivative 

yf’(x, h,, q) = (-l)k-’ sin(nnx + $kn) + 114 ]lkO(nk-‘). 

The leading order term in the kth-derivative of g, w.r.t. x is 

@Y2k &7q> 

J_’ 

This implies the asymptotic expansion 

b$g2(x,hk,q) = -JZ<nn)~ sin(rrnx + ikn) + O(nk-‘)llqllk, 

where we used that 

Jjz(l, L)Y~Wn) = z/2nrr(l + 0(1/n)). 

Applying the chain rule to the second term in (4.1) we get 

(4.2) 

(4.3) 

(4.4) 

(4.5) 

(4.6) 

(4.7) 
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h=x 

h” I 1 h =.‘c 

where cp,,) is the sum over all positive integers aj, j = I, . , k which satisfy the 

equations a~ + cr2 + . . . +lak =nandm =~~=,cr;.Since 

we get 

(4.9) 

Using the formulae 

drg,s(h, p(h),L,) = &(n.~)~-~~’ sin(rrsx + irnr) + O(s”-‘)llplj”‘. 

$,g.,(h, p(h),h,)(d,d, . . ,d) = .d’Pl(d,d, . . ,d; p)O(l/s), (4.10) 

and the trigonometric formula expressing the product of two sine functions as a sum of 
cosine functions, we get 

(4.1 I ) 
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where we defined 

m Pr(d,d, . ,d; p>Pm-r(d,d, ..,d; p) 

I i ajp 
X n -7. 

j=l j! ah] 
(4.12) 

Let e(n), II E N, be the function which is one if II is even and zero else and o(n) the 
function which is one if n is odd and zero else. Then we can rewrite the product of the two 
sine functions in (4.10) in the form 

sin 
( 

2nalx + F sin 
> ( 

(n - t)n 
27701.x + ~ 

2 > 
n-2 

1 1 
ZY -n 1-p 

2 sin2(e) > 
o(n) sin 21ral.x 

!q 

+ i n (l - sin2 ((~kil)n))(Cos2nclX + (-l>‘)e(n>. 
k=l 

(4.13) 

Using that C:=o(:) = 2”, ~~,o(-l)t(:) = (-1) “n! and (4.12), we write (4.10) in the 
form 

(4.10) = C A 
n>l 

* 

+ (2”(a,7r)“-0’ ; fl (1 - 
1 

sin2 ((2ki’)n) 
(2n cos2nalx + (-l)“n!)e(n) 

k=l 

+ 2”IIpllnO(a,“-2 > 1 + ~li,,O(--$)F(n,~~p) hn. 
02 

(4.14) 

We choose now the appropriate space for qai, i = 1,2 such that (4.13) is well defined. The 
first term we bound is 

Using the HGlder inequality we estimate 
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But the terms S,, defined by 

c aI* - = s, 
u, (019 

or in the equivalent way by 

s,, = &ee’ 1 
X=0 

are bounded by S, 5 n!n/([n/2])!, where [n/2] is for n odd equal to the integer N: 
$n - 1 < N -C in.Hencewegetforthefirstterm 

where we used 
e 

1 
l- >I < nkl,(sin2(kn/n) - l) < qq 

sin* (kn/n) - n-2 - 

nkz, sin*(krr/n) 

with q E [0, l].The next term we bound is 

which converges if ( r],n)nG~ E s, where s is the discrete analogue to the Schwartz space S. 
The third term we consider is 

5 c &“I c lnu2+$, 
111 1 02 

where we assumed that l]d]l > 1, I (d, p) ‘I. 

~)2m$+m31fi +%I. 
J jai 

, ](d,d)I < ]ld]l. If we take p(h) E S, then 
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I 
I 
X 

I 
I 

Y 
Interval [0, 11 

Fig. 4. 

We proved the following lemma. 

Theorem 12. Forhed p(x) E M(e), the function g, dejined in (4. l), acting on a normal 
vector U (x, p(x)) transforms it into the normal vector given in (4.10). The transformation 
g is well dejned if the sequence {qa, JnE~ is an element of the discrete Schwarz space s, 

IV,, LEN E e2 and P(X) E WI, 11. 

5. Conclusion, Fock bundle 

We saw in the previous sections that there are two groups GL2 and 6 acting on the 
normal spaces, i.e. on the Grassmannian Grz, and that there exists a central extension of 
G* which acts on the determinant bundle constructed over the Grassmannian. Fig. 4 shows 
the geometric situation. 

The question is, whether there exists a bundle F and if there exists a group M which has 
G* and an extension of C? as subgroups and which acts on the bundle F as an automorphism 
group. The way to find an answer to this question is to consider a situation where a similar 
construction has to be carried out and then to see how this construction can be used in our 
case. 
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The example we discuss is 3 + 1 dimensional Dirac-Yang-Mills theory. We follow 
Mickelsson [4] where the details can be found. The Fock space, that is the space of holo- 
morphic sections on a dual determinant bundle, is described by a single Dirac operator. This 
operator contains a potential A and if a physical theory wants to describe any interaction one 
has to consider not only one potential but all of them which describe a Dirac operator. This 
family of operators hence describes a family of Fock spaces. This implies that the splitting 
of the underlying Hilbert space H = H+(A) @ H_(A), which one uses to construct for 
example the Grassmannian and determinant bundle, depends on the parameter A. To be 
more explicit we consider the 3 + 1 theory. Then H+ is the direct sum of eigenspaces of the 
Dirac operators with potential A and positive energy. Furthermore, let M be a 3 dimensional 
compact spin manifold, G a compact Lie group, G the Lie algebra of G and A the vector 
space of all G-valued one forms. Then the map A --f Gr2. A + H+(A), is not continuous 
at the points in the space A where the eigenvalues of the Dirac Hamiltonian are zero. To 
overcome this difficulty in constructing the Fock bundle FA, A E A, one either constructs 
the projective space of complex lines of FA or one considers the Fock space parametrized 
by the elements of Gr2 and not by those of A. We discuss the second approach. 

If F E Gr2, the Fock space FF w.r.t. H = F @ FT is defined by the choice of a basis 
,f = (f), ,f2, . .) in F which is admissible to the basis e = (e - 1. e2. . . .) of H+, that is 

pr+(.f,,) = E .fjnej, 
j=l 

where (f;j)i, ,jEN is an operator of the form 1 +I,, w E St2 and wc.f) is the matrix appearing 
in the sections, i.e. 

$(wt) = 1cr(w)o2(w cf),r), t E G2. 

Since + depends on f we write @(w, f). 

Theorem 13. The,function $ : St2 x St2 -+ @ which satisj’ies the equations: 

1Cr(wt, f) = $(w, .f)w2(w cf’, t), t E G', 

Ilr(w. fr) = $(w. f) 
detz(w(f)t) 

det 
2 

,(f) 

is a section on the vector bundle 3’ over Gr2, where 3’ = DETT 8 f? and B is the trivial 
Fock bundle over Gr2 with jiber 3H+. 

The vacuum vector is +u = detz(f*w) and there exist groups Cl, G, and Gd which act 
in the following way on the sections: 
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with g E G2, q E GL(H+) and the functions cx are determined in the same way as in 
Theorem 10. The interpretation is the following one: f are the background fields and Gl is 
the group of gauge transformations in the fermionic Fock space r(DETz). The group G, 
is the action of the gauge transformations on the vector potentials and Gd is the symmetry 
group of the coupled Dirac-Yang-Mills system. Let .&I be the subbundle of F’ such that 
the fiber of Fh,,t at F E Gr2 consists of all holomorphic sections of DET;(F), that is, a 
section @ of .&,I is given by 

1cI(w, f) = UF)llrs(w, f), 

with J. : Gr2 + C a smooth function and S : H + H an operator which is equal to 
the identity operator plus a finite rank one. We know that G2 does not act in the space of 
holomorphic section &,I (DET;) but the central extension of the group G2i3 does. 

We compare this construction with our case. Let U = (171, U2, . .), V = (VI, V2, . . .) be 
two admissible bases. Furthermore, the Fock space FN~(M(~)) w.r.t. the splitting Li[O, l] = 
Nq(M(e)) @ Nq(M(e))T and the projection pr+ : N,(M(e)) + E is given. The groups 
which act on the sections of the Fock bundle are G2 and G;, that is 

g E G=, 

@(UT Vi) = Q(U, V) 
detz(U(“)g) 

det 
2 

U(v) , ,gEG. 

l), w E R, and it acts on a normal vector by An element 2 has the form 2 = (1, F 

V(x, q(x))g = V&x, s(I.Lx)). 

Appendix A 

Proof of Lemma 6. The normalized eigenfunctions are g,(x,h,) = yz(x,h,)/ 

“ ’ ” denotes differentiation w.r.t. h and “ ’ ” w.r.t. X. Further- 
more, 

Y2(x,bz) =h,(x)+ ~&&,Lh a,(x) := 
sin &x 

r;- , 

sm(X,hl,q(x)) = s 
Ojtl~.-jr,,+l=x 

The derivative of g, w.r.t. q is given by 

I 
rn 2 rn 

a& := /$-$$& - y2’x;;M;3k ? 
First we write out S, more explicitly, i.e. 
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Since Is~(x)l = I$ CA(~) dtl 5 exp[lIm fij x], where we used 

CA := cos hx = 4 I exp[iJIx] + exp[-iJIx]l, 

we estimate S, by 

Isn(x,L,~(x)l I 
s l~~,(fl)lfiJ(~~,,(~i+~ -ti)h(fi))ldtl dQ.“dfrn 

ojt1 i...g,+l =x 
i=2 

m 

expUIm~lx1 1 = 
lhll z 

< ~xpWfilx1 1 
- 

Pvll --#ll~)m. 

Therefore. 

x 

< _ s a,(~ - ~m)[fth(~m)) + h(hn)~~..f(h(~m))l dh 
0 

x tm 

IS a_ tx - 6n)hhn) s SA” hn- I bAn em - ~m-l)ht~m-l)~hf(h(t,-l))d~,-l d&n 
0 0 

< m exp[IImfilxl _ 
IL I 

1/;; &WllJ;Y-I. 
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This implies the bound 

< exp[lIm~lxl 
- 

ILlI 
,(lIww~Eh 

llhll 

The second term in the derivative of g, is bounded using 

J ~2u,&l)y;u,hn) = ~~(1 +0(1/n>)-‘, 

which implies that 

ahY2 

Since. 

I 1 

a&2(1, b&Y;(lvbd = ah 
s 

y,‘(t, A,) dt = 2 
s 

Y20, whY2kb) df 

0 0 

1 
2 sin &x 

6 
0 

this gives us the following expansion for the second term: 

( 2 sin fix 
= 

6 
+o $ 

( 0 
J;$$O($J (Wq1+0(~))) 

= Jqo($J. 

The first dominating term has the expansion 

This proves part (a). To prove part (b) we start with 
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= 2 “<,.:..[ +,= 

Sk, (tl)m(m - l)(m - 2). . . (m - k) 

_ <m x 

m-k 

X 
I-I (sA,, (ti+ I - ti )q (ti )) dtl dt2 . ’ dfrn, 
i=l 

which implies the bound 

PjY2/ 5 
exp[l Im~lxl co 

IL c m(m - I)(m-2)...(m -k)((lhll-J;;)m-k 
m=l 

_ expW-4.4 ~eclIhII~J 
lhnl ahk . 

The derivative of (3k/8hk)e(llhIIfi) is given by 

ifk,Cilhl,Ja - k c ahk - i=] ui(Y)Fi(Y), 

where 

F(Y(~)) = expb(x)l = expWlIfi1, 
,yi = aiyi _ iyakyi-l 

I! h 
+ (i - l)i 2 k 

-Y ahY 
i-2 

2! 
_ . + (_l)i-~iyi-~a~y, 

From this last formula the bound (2.28) is easily obtained. 
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